• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Scintillator Product

Scintillator Product

Scintillator-Crylink

MENUMENU
  • Products
    • Ce:YAG

      Ce:YAP

      Ce:LYSO

      Ce:GAGG

    • BGO

      Tl:CsI,Na:CsI,CsI

      Ce:LuAG

      Ce:BaF2

    • LaBr3

      LaCl3

      CeF3

    • Pr:LuAG

      Yb:YAP

      Eu:CaF2

    • Eu:SrI2

      CdWO4

      GOS

  • Applications
    • X-ray Detection

      γ-ray detection

    • Medical CT

      Industrial CT

    • PET

  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

  • Company
    • Culture

      History

      Team

      Ecosphere

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • News
You are here: Home / Scintillator Products / LaCl3

LaCl3

LaCl3 crystal has UCl3 type structure, space group P63/m, and it has attracted much attention for its high light output as well as good energy resolution. These unique properties made LaCl3 crystal a promising material as scintillator in the field of high-energy physics experiments and medical imaging, as well.

LaCl3 crystal belongs to hexagonal system, density is 3.8g/cm3. Its energy resolution is 3.1%, decay time With 26 ns and a time resolution of 224 ps, there is almost no damage after exposure to gamma rays up to 3 kGy. Such excellent scintillation performance is very rare in inorganic compounds. The energy is 60 keV to 1275 keV. Under the excitation of γ-ray source, the nonlinear response coefficient of light output is 7%, which is far superior to LSO:Ce crystal (35%), NaI: Tl crystal (15%) and CsI: Tl (20%). Compared with the commercially available scintillation crystal, it not only has high light output, fast decay time, good energy resolution and time resolution, but also has very low nonlinear energy response, so it is expected to be applied to Nuclear Medicine Imaging for Low Dose Radiation Detection-SPECT, safety inspection, geological exploration, environmental testing, nuclear diffusion inspection, etc.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Scintillator Properties
Property Value
MaterialLaCl3
Density (g/cm3) 3.8
Melting point (℃)860
Emission peak (nm)350, 430
Decay time (ns)28
Energy resolution R (%)10.5 ± 0.9
Photon yield (103 ph/MeV)34 ± 1
Light yield (photons/keV)49
Light output (photons/MeV)50,500
Absorbed γ-ray energy (keV) 662, 60
Photoelectron yield [% of NaI(TI)](for γ-rays) 35
Spertrum
LaCl3 Transmission SpectraLaCl3 Decay Time
Feature
Application
Reference
News
Feature
  • High light output
  • Fast response
  • Excellent energy resolution
  • Good time resolution
  • High chemical resistance
Application
  • SPECT
  • Safety inspection
  • Geological exploration
  • Environmental testing
Reference
[1]  Gruber J B ,  Conway J G . Absorption Spectrum and Zeeman Effect of Am3+ in LaCl3[J]. The Journal of Chemical Physics, 1962, 36(1):191-193.
[2]  Vandarkuzhali S ,  Gogoi N ,  Ghosh S , et al. Electrochemical behaviour of LaCl3 at tungsten and aluminium cathodes in LiCl–KCl eutectic melt[J]. Electrochimica Acta, 2012, 59(none):245-255.
[3] Baer, Wolfgang. Crystal spectrum of promethium 3 + in LaCl3[J]. Journal of Chemical Physics, 1973, 59(5):2294-2302.
[4]  Gruen D M ,  Conway J G ,  Mclaughlin R D , et al. Fluorescence Spectrum of Am+3 in LaCl3[J]. The Journal of Chemical Physics, 1956, 24(5):1115-1116.
[5] A Kovács,  Konings R ,  Booij A S . High-temperature infrared spectra of LaCl3, LaBr3, and LaI3[J]. Chemical Physics Letters, 1997, 268(3-4):207-212.
[6]  Shah K S ,  Glodo J ,  Klugerman M , et al. LaCl3:Ce scintillator for γ-ray detection[J]. Nuclear Inst & Methods in Physics Research A, 2003, 505:76-81.
[7] Hessler, J.P, Brundage, et al. Phonon-induced relaxation in excited optical states of trivalent neptunium in LaCl3[J]. Optics Letters, 1980, 5(8):348.
[8]  Glover W J ,  Madden P A . Raman spectra of ionic liquids: A simulation study of LaCl3 and its mixtures with alkali chlorides[J]. The Journal of Chemical Physics, 2004, 121(15):7293-7303.
[9]  Crosswhite H M ,  Carnall W T ,  Paszek A P . Spectrum analysis of U3+:LaCl3[J]. The Journal of Chemical Physics, 1980, 72(9):5103-5117.
[10] Eisenstein,  J. C . Spectrum of Nd3+ in LaCl3[J]. Journal of Chemical Physics, 1963, 39(9):2134-2140.
[11]  Bizarri G ,  Dorenbos P . Temperature dependent scintillation properties of pure LaCl3[J]. Journal of Physics Condensed Matter An Institute of Physics Journal, 2009, 21(23):235605.
[12]  Matubayasi N ,  Yoshikawa R . Thermodynamic quantities of surface formation of aqueous electrolyte solutions VII. Aqueous solution of alkali metal nitrates LiNO3, NaNO3, and KNO3.[J]. Journal of Colloid & Interface Science, 2007, 315(2):597-600.
[13]  Case G L ,  Siegmund O ,  Cherry M L , et al. Wavelength-shifting fiber readout of LaCl3 and LaBr3 scintillators[J]. International Society for Optics and Photonics, 2005, 5898:58980K.
[14]  Loef E ,  Dorenbos P ,  Eijk C , et al. High-energy-resolution scintillator: Ce3+ activated LaCl3[J]. Applied Physics Letters, 2000, 77(10):1467-1468.
[15]  Richman I ,  Satten R A ,  Wong E Y . Erratum: Lattice Vibrations of LaCl3 and LaBr3 from Vibronic Spectra[J]. The Journal of Chemical Physics, 1964, 40(5):1451-1452.
[16]  Conway J G . Energy Levels of Am IV in LaCl3[J]. The Journal of Chemical Physics, 1964, 40(9):2504-2507.
[17]  Hastie J W ,  FiCaLora P ,  Margrave J L . Mass spectrometric studies at high temperatures XXV. Vapor composition over LaCl3, EuCl3 and LuCl3 and stabilities of the trichloride dimers[J]. Journal of The Less-Common Metals, 1968, 14(1):83-91.
[18]  Ren G . Dehydration and oxidation in the preparation of Ce-doped LaCl3 scintillation crystals[J]. J. Alloy. Compd. 2009, 2009, 467(1):120-123.
[19]  Yuan X Z ,  Pan G ,  Chen H , et al. Phosphorus fixation in lake sediments using LaCl3-modified clays[J]. Ecological Engineering, 2009, 35(35):1599-1602.
[20]  Crosswhite H M ,  Newman D J . Spin-correlated crystal field parameters for lanthanide ions substituted into LaCl3[J]. The Journal of Chemical Physics, 1984, 81(11):4959-4962.
[21]  Bogacz G . Enthalpies of phase transition in the lanthanide chlorides LaCl3, CeCl3, PrCl3, NdCl3, GdCl3, DyCl3, ErCl3 and TmCl3[J]. Journal of Alloys and Compounds, 1994.
[22]  Sommers J A ,  Westrum E F . Thermodynamics of the lanthanide halides I. Heat capacities and Schottky anomalies of LaCI, PrC&, and NdCI, from 5 to 350 K8.
[23]  Narsaiah A V . Lanthanum Trichloride (LaCl3): An Efficient Catalyst for Conjugate Addition of Amines to Electron-Deficient Olefins[J]. Letters in Organic Chemistry, 2007, 4(7):-.
[24]  Carlson E H ,  Current D H ,  Foiles C L . Elastic Constants and Debye Temperature in LaCl3[J]. Journal of Chemical Physics, 1971, 55(12):5831-5832.
[25]  Slade P G ,  Quirk J P . The limited crystalline swelling of smectites in CaCl2, MgCl2, and LaCl3 solutions[J]. Journal of Colloid and Interface Science, 1991, 144(1):18–26.
[26] Performances and potentialities of a LaCl3:Ce scintillator[J]. Nuclear Instruments & Methods in Physics Research, 2005, 555(1/2):270-281.
[27]  Loef E ,  Dorenbos P ,  Eijk C . The scintillation mechanism in LaCl3:Ce3+[J]. Journal of Physics Condensed Matter, 2003, 15(8):1367.
[28]  Dorenbos P . Scintillation mechanisms in Ce3+ doped halide scintillators[J]. Physica Status Solidi, 2010, 202(2):195-200.
[29]  Iltis A ,  Mayhugh M R ,  Menge P , et al. Lanthanum halide scintillators: Properties and applications[J]. Nuclear Inst & Methods in Physics Research A, 2006, 563(2):359-363.
[30] van, Loef, E, et al. Non-Proportionality and Energy Resolution of a LaCl3:10% Ce3+ Scintillation Crystal.[J]. IEEE Transactions on Nuclear Science, 2003, 50(1):155-155.
[31]  Loef E ,  Dorenbos P ,  Eijk C , et al. Scintillation properties of LaCl3:Ce3+ crystals: Fast, efficient and high-energy-resolution scintillators[C]// Nuclear Science Symposium Conference Record. IEEE, 2000.
[32]  A E V D V L ,  A P D ,  A C W E V E , et al. Scintillation properties of LaBr3:Ce3+ crystals: fast, efficient and high-energy-resolution scintillators – ScienceDirect[J]. IEEE Transactions on Nuclear Science, 2002, 486(1):254-258.
[33] Yu, Pei, and, et al. Growth and luminescence characteristics of undoped LaCl3 crystal by Modified Bridgman Method – ScienceDirect[J]. Journal of Crystal Growth, 2005, 279(3-4):390-393.
News
Request for a quote

Related Products​

Ce YAP
Ce LuAG
Ce GAGG

Primary Sidebar

Footer

Hot Product

Ce:YAG
Ce:YAP
Ce:LYSO
Ce:GAGG
Ce:LuAG
BGO

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Youtube
Pinterest
Tumblr
Mix
Linkedin

Contact Us Today

Mail:sales@crylink.com
Phone:+86-025-68790685
Address: No.200, zhaoxian Road, Jiading Zone, Shanghai, China

Get Connected with us
  • Home
  • Products
  • Reference
  • Sales
© 1989-2020 Crylink INC All rights reserved.