Comparison of Lu$_3$Al$_5$O$_{12}$:Pr$^{3+}$ and Bi$_4$Ge$_3$O$_{12}$ scintillators for gamma-ray detection

Weerapong Chewpraditkula,*, Krittiya Sreebunpenga, Martin Niklb, Jiri A. Maresb, Karel Nejezchlebc, Akapon Phunpuekoc, Chalerm Wanaraka

aDepartment of Physics, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
bInstitute of Physics, AS CR, Cukrovarnicka 10, 16253 Prague, Czech Republic
cCRYTUR Ltd., Palackeho 175, 50001 Turnov, Czech Republic

A B S T R A C T

The scintillation properties of Lu$_3$Al$_5$O$_{12}$:Pr$^{3+}$ (LuAG:Pr) single crystal grown by the Czochralski method with praseodymium concentration of 0.19 mol% were investigated. For a comparison, a good quality Bi$_4$Ge$_3$O$_{12}$ (BGO) single crystal grown by Bridgman method was also studied. The light yield and energy resolution were measured using photomultiplier tube (XP5200B PMT) readout. Moderate light yield of 15,900 photons per MeV was measured for the LuAG:Pr(0.19%) crystal. For 662 keV gamma rays (137Cs source), an energy resolution of 6.5% obtained for LuAG:Pr(0.19%) is much better than that of 9.0% obtained for BGO. The light yield non-proportionality and energy resolution versus energy of gamma rays were measured and the intrinsic resolution of the crystals was determined after correcting the measured energy resolution for PMT statistics. The LuAG:Pr(0.19%) showed a good proportionality of the light yield within 5% over the energy range from 1274.5 keV down to 32 keV, which is much better than that of 14% for BGO. The photofraction was determined at 320 and 662 keV for both crystals and compared with the ratio of the cross-sections for the photoelectric effect to the total one calculated using WinXCOM program.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Research and development of new scintillator materials is mainly triggered by the growing needs of modern medical imaging and high-energy physics research. A number of Ce$^{3+}$-doped oxides based scintillators have been intensively studied, Gd$_2$SiO$_5$:Ce (GSO:Ce) (Takagi and Fukazawa, 1983), Lu$_2$SiO$_5$ (LSO:Ce) (Melcher and Schweitzer, 1992), (Lu,Y)$_2$SiO$_5$:Ce (LYSO:Ce) (Cooke et al., 2000; Kimble et al., 2002), Lu$_2$Si$_2$O$_7$:Ce (LPS:Ce) (Pidol et al., 2003), and LuAlO$_3$:Ce (LuAP:Ce) (Lempicki et al., 1995; Wojtowicz et al., 1998), Lu$_3$Al$_5$O$_{12}$:Ce (LuAG:Ce) (Nikl et al., 2000) and LuYAlO$_3$ (LuYAP:Ce) (Drozdowski et al., 2006). These scintillators exhibit desirable properties for γ-ray detection: high stopping power, high light output and fast scintillation decay.

Pr$^{3+}$-doped Lu$_3$Al$_5$O$_{12}$ (LuAG:Pr) single crystal was recently reported as a new, even faster and efficient scintillator (Ogino et al., 2006a,b; Nikl et al., 2005). The density of LuAG is of about 6.67 g/cm3 and its effective atomic number is of about 59. LuAG:Pr has a moderate light yield of about 19,000 photons/MeV (ph/MeV) and a very good energy resolution of 4.6% (both values observed at 662 keV gamma excitation; Drozdowski et al., 2008). These properties, and together with a fast scintillation decay time of 20 ns make LuAG:Pr an attractive scintillator for γ-ray detection. It was found that the light yield of LuAG:Pr increases with Pr concentration from 0.1 to 0.22 mol%, peaks at about 0.22–0.24 mol%, and then decreases (Ogino et al., 2006a; Yanagida et al., 2011). The decrease of the light yield with increasing Pr concentration from 1.5 to 10 mol% was also reported (Drozdowski et al., 2009).

In this paper, we report on the detection properties of γ-rays for LuAG:Pr (0.19%) crystal and compared with those of BGO crystal over energy range from 32 to 1274.5 keV. The light yield non-proportionality and energy resolution versus energy of γ-rays were measured and the intrinsic resolution of the crystals was determined after correcting the measured energy resolution for PMT statistics. The estimated photofraction in the pulse height spectra of 320 and 662 keV γ-rays was determined for both crystals and compared with the ratio of the cross-sections for the photoelectric effect to the total one calculated using WinXCOM program.
2. Experimental

The LuAG:Pr crystal was grown by Czochralski method at Crytur Ltd (Czech Republic) with Pr\(^{3+}\) concentration of 0.19 mol % in the crystal (Pejchal et al., 2009). Plate of 7 × 7 × 1 mm\(^3\) was cut and polished for all measurements. For a comparison, the same size (7 × 7 × 1 mm\(^3\)) plate of high quality BGO single crystal grown by Bridgman method at the Shonan Institute of Technology (Fujisawa, Japan) was also measured.

Photoelectron yield and energy resolution were measured with a Photonis XP5200B photomultiplier tube (PMT) having a high blue photocathode sensitivity of 12.5 μA/MeV. In order to maximize light collection, the samples were optically coupled by silicone grease to the PMT and covered with several layers of white Teflon (PTFE) tape in a configuration of a reflective umbrella. The signal from the PMT anode was passed to a Canberra 2005 preamplifier and then to a Tennelec TC243 spectroscopy amplifier. The measurements were carried out with 4 μs shaping time constant in the amplifier. The PC-based multichannel analyzer (MCA), Tukan 8k (Guzik et al., 2006) was used to record pulse height spectra. Gaussian functions were fitted to the full energy peak, using procedures in the MCA, to determine their position and energy resolution. It included also the analysis of complex double peaks, characteristic of KX-rays and those exhibiting an escape peak.

The photoelectron yield, expressed as a number of photoelectrons released from the PMT photocathode per MeV (phe/MeV) of energy deposited in the crystal, was determined by means of a single photoelectron method (Bertolaccini et al., 1968; Moszynski et al., 1997). In this method the number of photoelectrons is measured by comparing the position of a full energy peak of γ-rays detected in the crystals with that of the single photoelectron peak from the PMT photocathode.

The measurements of light yield non-proportionality and energy resolution were carried out for a series of X/γ-rays emitted by different radioactive sources (\(^{241}\)Am, \(^{133}\)Ba, \(^{51}\)Cr, \(^{137}\)Cs, \(^{58}\)Co, and \(^{22}\)Na) in the energy range from 32.1 to 1274.5 keV. All measurements were carried out at room temperature (RT).

3. Results and discussion

3.1. Energy spectra and photoelectron yield

Fig. 1 presents the pulse height spectra of 662 keV γ-rays from a \(^{137}\)Cs source as measured with LuAG:Pr (0.19%) and BGO crystals at RT under identical operating conditions, whereas the values of photoelectron yield and energy resolution are summarized in Table 1. The energy resolution of 6.5% obtained with LuAG:Pr (0.19%) is much better than that of 10.0% reported for studied BGO, see below. Note a significantly lower photoelectron yield from the studied LuAG:Pr (0.19%) crystal, by about 20–40%, compared to that quoted in the literature (Drozdowski et al., 2008; Swiderski et al., 2009) for the crystals with higher Pr concentration of about 0.23 mol%. The photoelectron yield of 3660 ± 200 phe/MeV measured for LuAG:Pr (0.19%) corresponds to a light yield of 15,900 ± 1600 ph/MeV, assuming 23% effective quantum efficiency (QE) of PMT for Pr\(^{3+}\) 5d → 4f emission (300–440 nm, peaks at 310 and 370 nm). This value is in agreement with the light yield measured for LuAG:Pr crystals with Pr concentration of 0.10, 0.18, and 0.22 mol% (Yanagida et al., 2011). This result, and together with the decreasing light yield of LuAG:Pr crystals at higher Pr concentrations (Drozdowski et al., 2009), agrees with the conclusions of Ogino et al. (Ogino et al., 2006a) that the light yield of LuAG:Pr first increases with concentration, peaks at about 0.22–0.24% Pr, and decreases.

In the measurements with the XP5200B PMT, the studied BGO shows a photoelectron yield of 1810 ± 100 phe/MeV. This value corresponds to a light yield of 8600 ± 800 ph/MeV at a QE of 21% for the BGO peak emission (480 nm). Note a significantly higher photoelectron yield, by about 25%, compared to that quoted for a \(29 \times 4 \) mm BGO crystal (Moszynski et al., 2004). However, the scintillation light loss in BGO is rather large (Drozdowski et al., 2010). To obtain an intrinsic yield \(Y_0\), which would be observed in the absence of scintillation light loss inside the material by optical absorption and photon scattering, we employ a simple two-ray absorption and photon scattering, we employ a simple two-ray

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Photoelectron yield (phe/MeV)</th>
<th>Energy resolution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LuAG:Pr</td>
<td>3660 ± 200</td>
<td>6.5 ± 0.2</td>
</tr>
<tr>
<td>BGO</td>
<td>1810 ± 100</td>
<td>9.0 ± 0.3</td>
</tr>
</tbody>
</table>

13.3% obtained with BGO. Note the KX-rays escape peak well separated from photopeak for BGO crystal, which is due to its good energy resolution and high energy of bismuth KX-rays of about 76 keV.

In the measurements with the XP5200B PMT, the studied LuAG:Pr (0.19%) sample shows a photoelectron yield of 3660 ± 200 phe/MeV as measured at 662 keV γ-rays. Note a significantly lower photoelectron yield from the studied LuAG:Pr (0.19%) crystal, by about 20–40%, compared to that quoted in the literature (Drozdowski et al., 2008; Swiderski et al., 2009) for the crystals with higher Pr concentration of about 0.23 mol%. The photoelectron yield of 3660 ± 200 phe/MeV measured for LuAG:Pr (0.19%) corresponds to a light yield of 15,900 ± 1600 ph/MeV, assuming 23% effective quantum efficiency (QE) of PMT for Pr\(^{3+}\) 5d → 4f emission (300–440 nm, peaks at 310 and 370 nm). This value is in agreement with the light yield measured for LuAG:Pr crystals with Pr concentration of 0.10, 0.18, and 0.22 mol% (Yanagida et al., 2011). This result, and together with the decreasing light yield of LuAG:Pr crystals at higher Pr concentrations (Drozdowski et al., 2009), agrees with the conclusions of Ogino et al. (Ogino et al., 2006a) that the light yield of LuAG:Pr first increases with concentration, peaks at about 0.22–0.24% Pr, and decreases.

In the measurements with the XP5200B PMT, the studied BGO shows a photoelectron yield of 1810 ± 100 phe/MeV. This value corresponds to a light yield of 8600 ± 800 ph/MeV at a QE of 21% for the BGO peak emission (480 nm). Note a significantly higher photoelectron yield, by about 25%, compared to that quoted for a \(29 \times 4 \) mm BGO crystal (Moszynski et al., 2004). However, the scintillation light loss in BGO is rather large (Drozdowski et al., 2010). To obtain an intrinsic yield \(Y_0\), which would be observed in the absence of scintillation light loss inside the material by optical absorption and photon scattering, we employ a simple two-ray absorption and photon scattering, we employ a simple two-ray absorption and photon scattering, we employ a simple two-ray
The energy resolution ($\Delta E/E$) of a full energy peak measured with a scintillator coupled to a PMT can be written as (Moszynski et al., 2002)

$$(\Delta E/E)^2 = (\delta_{ic})^2 + (\delta_p)^2 + (\delta_{st})^2,$$

(1)

where δ_{ic} is the intrinsic resolution of the crystal, δ_p is the transfer resolution and δ_{st} is the statistical contribution of PMT to the resolution.

The statistical uncertainty of the signal from the PMT can be described as

$$\delta_{st} = 2.355 \times 1/N^{1/2} \times (1 + \varepsilon)^{1/2}.$$

(2)

where N is the number of the photoelectrons and ε is the variance of the electron multiplier gain, equal to 0.1 for an XP5200B PMT.

Overall energy resolution and PMT resolution can be determined experimentally. If δ_p is negligible, intrinsic resolution δ_{ic} of a crystal can be written as follows

$$(\delta_{ic})^2 = (\Delta E/E)^2 - (\delta_{st})^2.$$

(3)

Fig. 3 presents the overall energy resolution ($\Delta E/E$) as a function of γ-ray energy, measured for LuAG:Pr (0.19%) and BGO crystals. Over the energy range from 32 to 1274.5 keV, the overall energy resolution of LuAG:Pr (0.19%) is much better than that of BGO. Fig. 4 presents a direct comparison of the intrinsic resolution δ_{ic} for both crystals. The lower intrinsic resolution of LuAG:Pr (0.19%) should be reflected in good proportionality of light yield versus energy of γ-rays, as the non-proportionality of light yield is a fundamental limitation to intrinsic energy resolution (Dorenbos et al., 1995). An analysis of the 662 keV energy resolution for LuAG:Pr (0.19%) and BGO coupled to the XP 5200B PMT is presented in Table 2. Note that the worse energy resolution for a studied LuAG:Pr (0.19%) than that reported for LuAG:Pr with Pr concentration of about 0.23 mol%, as previously mentioned, is mainly due to its lower photoelectron yield.
(large contribution of δ_2). The intrinsic resolution of 4.1% obtained for the studied LuAG:Pr (0.19%) is slightly worse than the value of about 3% reported for the LuAG:Pr crystals with Pr concentration of 0.18 and 0.23 mol% (Yanagida et al., 2011; Swiderski et al., 2009), which reflects to a lower quality of the studied crystal. It could be attributed to the inhomogeneities of dopant and some defects in the crystal.

3.2. Non-proportionality of light yield

Non-proportionality of light yield is defined as the ratio of light yield measured at specific γ-ray energies relative to the light yield at the 662 keV γ-peak. The data presented in Fig. 5 exhibit a high proportional scintillation response of LuAG:Pr (0.19%). Over the energy range from 1274.5 keV down to 32 keV, the non-proportionality in its light yield is about 5% which is much better than that of about 14% for BGO. The higher proportionality of LuAG:Pr with respect to BGO is reflected in its lower value of intrinsic resolution, see Fig. 4. The proportionality behavior obtained in this measurement for a small LuAG:Pr sample ($7 \times 7 \times 1$ mm3) is about the same (decrease less than 6% down to 32 keV) as the ones measured for larger samples $10 \times 10 \times 5$ mm3 (Swiderski et al., 2009) and $10 \times 10 \times 10$ mm3 (Drozdowski et al., 2008). These results demonstrate that the non-proportionality response of LuAG:Pr crystal is not strongly affected by the crystal size. The high proportionality of LuAG:Pr is one of the main reasons (in conjunction with its high light yield) behind its good energy resolution.

3.3. Photofraction

The photofraction is defined here as the ratio of counts under the photopeak (including X-ray escape peak) to the total counts of the spectrum as measured at a specific γ-ray energy. The photofraction for LuAG:Pr and BGO at 320 and 662 keV γ-rays is collected in Table 3. For a comparison, the ratio of the cross-sections for the photoelectric effect to the total one calculated using the WinXCom program (Gerward et al., 2004) are also given. The data indicate that BGO shows higher photofraction than LuAG:Pr for both γ-rays energies in a same trend with the cross-section ratio (σ-ratio) obtained from the WinXCom program. It is due to higher effective atomic number (75 vs 59) and density (7.13 vs 6.67 g/cm3) of BGO with respect to LuAG:Pr.

4. Conclusion

The scintillation properties of small size LuAG:Pr (0.19%) and BGO crystals were studied and compared for γ-ray detection. Energy resolution of 6.5% at 662 keV γ-rays obtained with LuAG:Pr (0.19%) is much better than that of 9.0% for BGO. An advantage of BGO is its high density and effective atomic number, which results in a higher photofraction. The studied LuAG:Pr (0.19%) has moderate light yield of 15,900 ph/MeV and very good proportionality of light yield. Its relatively high value of the intrinsic resolution indicates that quality improvement is possible yet. On the other hand, a drawback of LuAG:Pr crystal is its very intense slow component in the scintillation decay (Nikl et al., 2005; Drozdowski et al., 2008; Swiderski et al., 2009), which is due to retrapping of charge carriers at shallow traps and appearance of the delayed radiative recombination at the Pr$^{3+}$-emission centers. It points to a chance to enhance its scintillation intensity of fast component determining both the energy and time resolutions, if related shallow traps could be suppressed. This fact together with the already recognized excellent energy resolution, fast (20 ns) scintillation decay and considerably high detection efficiency for γ-rays, would make LuAG:Pr the material of choice for γ-ray spectrometry and PET imaging.

Acknowledgments

This work was supported by the National Research University Project of Thailand, Office of the Higher Education Commission. Financial support of Czech GACR 202/08/0893 project is also gratefully acknowledged.

References

