First Results of the Experiment to Search for 2β Decay of 106Cd with the Help of 106CdWO$_4$ Crystal Scintillators

Citation: AIP Conference Proceedings 1304, 354 (2010); doi: 10.1063/1.3527222
View online: http://dx.doi.org/10.1063/1.3527222
View Table of Contents: http://aip.scitation.org/toc/apc/1304/1
Published by the American Institute of Physics
First Results of the Experiment to Search for 2β Decay of 106Cd with the Help of 106CdWO$_4$ Crystal Scintillators

P. Bellia, R. Bernabeia,b, R. S. Boikoc, V. B. Brudanind, F. Cappellac,f, V. Caracciolog, R. Cerullig, D. M. Chernyakc, F. A. Danevichc, S. d’Angeloa,b, A. E. Dossovitskiyh, E. N. Galashovi, A. Incicchittic,f, V. V. Kobychevc, S. S. Nagornyc, F. Nozzolia, B. N. Kropivyanskyc, V. M. Kudovbenkoc, A. L. Mikhlinh, A. S. Nikolaikoc, D. V. Podag,c, R. B. Podviyanukc, O. G. Polischukc, D. Prosperic,f,t, V. N. Shlegeli, Yu. G. Stenini, J. Suhonenj, V. I. Tretyakc, Ya. V. Vasilievi

a INFN sezione Roma Tor Vergata, I-00133 Rome, Italy
b Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome, Italy
c Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine
d Joint Institute for Nuclear Research, 141980 Dubna, Russia
e INFN, sezione Roma “La Sapienza”, I-00185 Rome, Italy
f Dipartimento di Fisica, Università di Roma La Sapienza, 00185 Rome, Italy
g INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ), Italy
h Joint Stock Company NeoChem, 117647 Moscow, Russia
i Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia
j Department of Physics, University of Jyväskylä, FIN-40014 Jyväskylä, Finland

Abstract. An experiment to search for 2β processes in 106Cd with the help of 106CdWO$_4$ crystal scintillator (mass of 215 g), enriched in 106Cd up to 66%, is in progress at the Gran Sasso National Laboratories of the INFN (Italy). After 1320 h of data taking, limits on double beta processes in 106Cd have been established on the level of $10^{19} - 10^{20}$ yr, in particular (all the results at 90% C.L.): $T_{\beta\beta}(0\nu 2\epsilon) > 3.6 \times 10^{20}$ yr, $T_{\beta\beta}(2\nu 2\beta^+) > 7.2 \times 10^{19}$ yr, and $T_{\beta\beta}(2\nu 2\beta^-) > 2.5 \times 10^{20}$ yr. Resonant 0ν2β processes have been restricted as $T_{\beta\beta}(0\nu 2\epsilon K) > 1.4 \times 10^{20}$ yr and $T_{\beta\beta}(0\nu LK) > 3.2 \times 10^{20}$ yr. A possible resonant enhancement of the 0ν2ε processes is estimated in the framework of the QRPA approach.

Keywords: Double beta decay; Scintillation detector; CdWO$_4$ crystals.

PACS: 23.40.-s; 29.40.Mc.

† Deceased.
INTRODUCTION

Neutrinoless double beta (0ν2β) decay is a powerful tool to investigate properties of neutrino and weak interaction. Study of this extremely rare effect could determine an absolute neutrino mass and its hierarchy, establish nature of neutrino (Majorana or Dirac particle), check the lepton number conservation, possible contribution of right-handed admixture to weak interaction, existence of Majorons.

Isotope 106 Cd is one of the most promising objects for 2β experiments thanks to large energy release \(Q_{2\beta} = 2770 \pm 7 \text{ keV} \) [1] and comparatively high natural abundance \(\delta = 1.25 \pm 0.06 \% \) [2]). Experiments fulfilled to-date give only \(T_{1/2} \) limits on 2β processes in 106Cd on the level of \(10^{18} - 10^{20} \text{ yr} \) [3, 4, 5, 6, 7]. Taking into account theoretical calculations [8, 9, 10, 11, 12, 13, 14], double beta decay of 106Cd could be detected at the level of sensitivity of \(10^{21} - 10^{22} \text{ yr} \).

Cadmium tungstate (CdWO₄) crystal scintillators were successfully applied in experiments to search for 2β decay [3, 6, 15], investigations of rare α [16] and β [17, 18] decays of Cd and W isotopes. A CdWO₄ crystal scintillator enriched in 106Cd to 66\% (106CdWO₄) was developed to realize a high sensitivity experiment to search for 2β processes in 106Cd [19]. First results of the experiment are presented here.

EXPERIMENT

The 106 CdWO₄ scintillator (Ø27 × 50 mm, mass of 215.4 g) is fixed inside a cavity Ø47 × 59 mm (filled with high-purity silicon oil) in the polystyrene light-guide Ø66 × 312 mm. Two high purity (HP) quartz light-guides Ø66 × 100 mm are optically connected on opposite sides of the light-guide. The assembling is viewed by two 3" low radioactive EM9265 photomultipliers (PMT). The detector is installed in the low-background DAMA R&D set-up at the Gran Sasso National Laboratories of the INFN. It is sealed in a low radioactive Cu box flushed with HP nitrogen gas to avoid presence of radon. The Cu box is surrounded by Cu (10 cm of thickness), 15 cm of lead, 1.5 mm of cadmium and 4 to 10 cm of polyethylene/paraffin. The shield is contained inside a Plexiglas box, also flushed by HP nitrogen. An event-by-event data acquisition system records amplitude, arrival time, and pulse shape of events by a 1 GS/s 8 bit DC270 Transient Digitizer by Acqiris (adjusted to a sampling frequency of 20 MS/s) over a time window of 100 µs. Energy dependence of the detector energy resolution was measured with 22Na, 133Ba, 137Cs, 228Th and 241Am sources as FWHM\(_{\gamma} = \sqrt{11.2 \cdot E_\gamma} \), where \(E_\gamma \) is the energy of \(\gamma \) quanta; FWHM\(_{\gamma} \) and \(E_\gamma \) are in keV.

RESULTS and DISCUSSION

The energy spectrum of \(\gamma(\beta) \) events accumulated with the 106CdWO₄ detector over 1320 h is presented in Fig. 1. The \(\gamma(\beta) \) events were selected by pulse-shape discrimination described in [20, 16, 21]. The counting rate \(\approx 24 \text{ counts/s} \) below the energy of \(\approx 0.6 \text{ MeV} \) is mainly due to the \(\beta \) decay of 113mCd (\(Q_\beta = 584 \text{ keV}, T_{1/2} = 14.1 \text{ yr} \) [22]) with the activity 112 ± 5 Bq/kg. The contamination of the enriched 106Cd by 115mCd was detected in the low-background TGV experiment [23].
FIGURE 1. Energy spectrum of $\gamma(\beta)$ events measured with 106CdWO$_4$ scintillator over 1320 h in the low-background set-up. (Inset) β decay of 113mCd dominates at low energy (the data over 268 h).

Contributions to the background above the energy 0.6 MeV were analyzed by the time-amplitude (see, e.g. [24, 25]) and the pulse-shape discrimination techniques [20, 16, 21], as well by fit of the energy spectrum (the procedure is described in [6, 15, 18]) by models of background (internal 40K, 207Bi, U/Th, external γ rays from the set-up) simulated with the help of the EGS4 code [26]. Two peaks at \approx1.06 and \approx1.63 MeV can be explained by contamination of the crystal by 207Bi. The data on radioactive contamination of 106CdWO$_4$ crystal are summarized as (in mBq/kg): 232Th \leq 0.1, 228Th = 0.045(6), 238U \leq 0.3, 230Th \leq 0.8, 226Ra \leq 0.3, 210Po \leq 0.3, total α activity (U/Th) = 2.1(1), 40K \leq 5, 113Cd = 174, 113mCd = 112 000(5 000), 207Bi = 2.3(5).

There are no peculiarities in the spectrum which could be ascribed to the 2β processes in 106Cd. Therefore, lower half-life limits can be set according to formula: $\text{lim} T_{1/2} = N \cdot \eta \cdot t \cdot \ln 2 / \text{lim} S$, where N is the number of 106Cd nuclei (2.420×10^{23}), η is the detection efficiency, t is the measuring time, and $\text{lim} S$ is the number of events of the effect searched for which can be excluded at a given confidence level (C.L.). To estimate values of $\text{lim} S$, the experimental energy spectrum was fitted in different energy intervals by the sum of components representing the background (internal 40K, 207Bi, U/Th, external γ's) and the expected models for 2β processes in 106Cd simulated by using the EGS4 code (some examples of the simulated 2β spectra are presented in Fig. 2). The fits allow us to set limits on the 2β decays in 106Cd given in Table 1.

In case of 0ν capture of two electrons from the K shell (or L and K shells) of Cd atom, energy release of 2721 ± 7 keV (2742 ± 7 keV) is equal, within errors, to energy of the excited levels of 106Pd with $E_{\text{exc}} = 2718$ keV (2741 keV) [22]. Such a coincidence could give a resonant enhancement of the $0\nu2\epsilon$ capture [27, 28].

The resonant 2β half-life of 106Cd was estimated by using the general formalism of [27] and calculating the associated nuclear matrix element in a realistic single-particle space using a microscopic nucleon-nucleon interaction. We have used a higher-RPA (random-phase approximation) framework called the multiple-commutator model (MCM) [29, 30]. We have assumed that the spin-parity of the resonant levels is 0^+. 356
FIGURE 2. Simulated response functions of the 106CdWO4 scintillator to 2β processes in 106Cd.

FIGURE 3. Calculated dependence of the half-life of 106Cd relatively to the resonant 0ν2δ capture to excited levels of 106Pd on parameter x (see text) for different values of the effective neutrino mass.

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>Level of 106Pd</th>
<th>Experimental limit on $T_{1/2}$ at 90% C.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0\nu2\epsilon$</td>
<td>g.s.</td>
<td>$\geq 3.6 \times 10^{20}$</td>
</tr>
<tr>
<td>$2\nu\beta^+$</td>
<td>g.s.</td>
<td>$\geq 7.2 \times 10^{19}$</td>
</tr>
<tr>
<td>$2\nu\beta^+$</td>
<td>512 keV</td>
<td>$\geq 9.0 \times 10^{19}$</td>
</tr>
<tr>
<td>$2\nu\beta^+$</td>
<td>1128 keV</td>
<td>$\geq 3.2 \times 10^{20}$</td>
</tr>
<tr>
<td>$0\nu\beta^+$</td>
<td>1134 keV</td>
<td>$\geq 3.5 \times 10^{20}$</td>
</tr>
<tr>
<td>$0\nu2\epsilon$</td>
<td>g.s.</td>
<td>$\geq 2.1 \times 10^{20}$</td>
</tr>
<tr>
<td>$2\nu2\beta^+$</td>
<td>g.s.</td>
<td>$\geq 2.5 \times 10^{20}$</td>
</tr>
<tr>
<td>$2\nu2\beta^+$</td>
<td>512 keV</td>
<td>$\geq 3.2 \times 10^{20}$</td>
</tr>
<tr>
<td>Resonant $0\nu2K$</td>
<td>2718 keV</td>
<td>$\geq 1.4 \times 10^{20}$</td>
</tr>
<tr>
<td>Resonant $0\nuKL$</td>
<td>2741 keV</td>
<td>$\geq 3.2 \times 10^{20}$</td>
</tr>
</tbody>
</table>

The half-life can be written as:

$$T_{1/2} = 5.561 \times 10^{23} \frac{x^2 + 9.42}{\langle m_\nu \rangle^2} \text{ yr},$$

(1)

where $x = |Q - E|$, and $\langle m_\nu \rangle$ (the effective Majorana neutrino mass) are in units of eV. Here Q is the difference in atomic masses between 106Cd and 106Pd, E contains the nuclear excitation energy and the hole energies in the atomic s orbitals. The dependence of the half-life on x (see Fig. 3) gives a strong motivation for precise

357
measurements of the atomic masses difference between ^{106}Cd and ^{106}Pd, and properties (spin and parity) of the 2718 and 2741 keV excited levels of ^{106}Pd.

CONCLUSIONS

An experiment using a cadmium tungstate crystal scintillator enriched in ^{106}Cd to 66% is in progress in the DAMA R&D set-up at the LNGS. After 1320 h of data taking we have estimated radioactive contamination of the $^{106}\text{CdWO}_4$ scintillator (in particular the total α activity of U/Th is on the level of ≈ 2 mBq/kg). The main components of background are β active ^{113m}Cd (112 Bq/kg) and ^{207}Bi (2.3 mBq/kg). By analysis of the experimental data we have set limits on 2β processes in ^{106}Cd on the level of $10^{19} - 10^{20}$ yr. A possible resonant enhancement of $0\nu2\epsilon$ processes was estimated in the framework of QRPA approach. A sensitivity of the experiment to different 2β decays in ^{106}Cd after ≈ 3 yr of measurements is expected to be on the level of $\sim 10^{21}$ yr.

REFERENCES