• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Scintillator Product

Scintillator Product

Scintillator-Crylink

MENUMENU
  • Products
    • Ce:YAG

      Ce:YAP

      Ce:LYSO

      Ce:GAGG

    • BGO

      Tl:CsI,Na:CsI,CsI

      Ce:LuAG

      Ce:BaF2

    • LaBr3

      LaCl3

      CeF3

    • Pr:LuAG

      Yb:YAP

      Eu:CaF2

    • Eu:SrI2

      CdWO4

      GOS

  • Applications
    • X-ray Detection

      γ-ray detection

    • Medical CT

      Industrial CT

    • PET

  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

  • Company
    • Culture

      History

      Team

      Ecosphere

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • News
You are here: Home / Scintillator Products / Tl:CsI,Na:CsI,CsI

Tl:Csl,Na:Csl,Csl

TI:CsI, Na:CsI,CsI Scintillator Crystals

TI:CsI is one of the brightest scintillators. It has most of its emission in the long wavelength part of the spectrum (>500nm), it is well-suited for photodiode readout. TI:CsI crystal has high light yield, no cleavage surface, low melting point and easy growth. It has good optical properties, mechanical properties, physical and chemical stability and high photoelectric conversion efficiency. It is a scintillator with excellent comprehensive performance. It has been widely used in many fields, such as Security check, Detection of neutrinos, Detection of neutrinos andγ-ray, XCT.

Pure CsI is also known as a scintillator but exhibits rather different properties. It exhibits fast (~10 ns) emission, peaking at 310 nm, but its scintillation yield at room temperature is very low. But its light yield at 77 K reaches an impressive 100,000 ph/MeV, that makes pure CsI a very attractive scintillator for detector applications at low temperatures.

Na-doped cesium iodide (Na:CsI) is an important alkali metal halide inorganic scintillator that is widely used as laser-stimulable transparent film and X-ray detection materials. Na:CsI has peaking emission at 420 nm, and its decay time is about 630 ns.As an inorganic scintillator, Na:CsI has  relatively high luminescence intensity and effective atomic number compared to organic scintillator. Recently, it is found that Na:CsI is a promising suitable detection material for dark matter scientific exploration. 

Download PDF
Ask for a test Sample FREE

Parameter

Material Features
Chemical formulaTI:CsINa:CsICsI
Density (g/cm3)4.514.514.51
Melting point (℃)894621894
Hardness (Mho)222
HygroscopicSlightlyYesSlightly
CleavageNoNoNo
Solubility (g/100gH2O)N/AN/A/
Thermal expansion coeff (C-1)54*10-654*10-654*10-6
Scintillator Properties
Chemical formulaTI:CsINa:CsICsI
Wavelength(Max. emission) (nm)550420315
Wavelength range (nm)320-300-260-
Decay time (ns)90030016
Light yield (photons/keV)54412
Light output relative to Nal(Tl) (%)45855
Refractive index1.8@550nm1.84 (@420nm)1.95
Radiation length (cm)1.861.861.86
Optical transmission (um)TBATBA/
Transmittance (%)TBATBA/
Reflection loss/surface (%)TBATBA/
Neutron Capture Cross-section (barns)1.47TBA/
Afterglow (%)0.5-5.00.5-5.0/
Spertrum
CsI emission spectrumCsI decay time
CsI X-ray radioluminscence spectrumNa-CsI emission spectrum
Na-CsI response waveformNa-CsI transmission spectrum
TI-CsI Emission spectrumTI-CsI Transmission spectrum
Feature
Application
Reference
News
Feature
  • Matched with silicon photodiodes
  • High light yield
  • Low melting point
  • Easy growth
  • Good optical and mechanical properties
  • Good physical and chemical stability
  • High photoelectric conversion efficiency
Application
  • Security check
  • Detection of neutrinos
  • Detection of neutrinos γ-ray
  • XCT
  • PET
  • Position sensitive detector
  • Geological exploration
  • Industrial CT camera
Reference
[1]  Gruber G J ,  Moses W W ,  Derenzo S E , et al. A discrete scintillation camera module using silicon photodiode readout of CsI(TI) crystals for breast cancer imaging[J]. IEEE Transactions on Nuclear Science, 1998, 45(3):1063-1068.
[2]  Nagirnyi V ,  Zazubovich S ,  Zepelin V , et al. A new model for the visible emission of the CsI: Tl crystal[J]. Chemical Physics Letters, 1994, 227(4-5):533-538.
[3] Ioannis, Valais, and, et al. A systematic study of the performance of the CsI:Tl single-crystal scintillator under X-ray excitation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 571(1-2):343-345.
[4] S Pécourt,  Chambon B , MD Jésus, et al. Calibration of a CsI(Tl) crystal with nuclear recoils and pulse shape measurements for dark matter detection[J]. Astroparticle Physics, 1999, 11(4):457-462.
[5]  Sokolov V O ,  Plotnichenko V G ,  Dianov E M . Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals[J]. Optics Express, 2013, 21(8):9324-9332.
[6]  Bozorgnia N ,  Gelmini G B ,  Gondolo P . Channeling in direct dark matter detection III: channeling fraction in CsI crystals[J]. Journal of Cosmology & Astroparticle Physics, 2010, 11(11).
[7] Hamada, Margarida, M, et al. Dependence of Scintillation Characteristics in the CsI(Tl) Crystal on Tl[sup+] Concentrations Under Electron and Alpha Particles Excitations.[J]. IEEE Transactions on Nuclear Science, 2001, 48(4):1148-1148.
[8]  Kim H J ,  Lee H S ,  Bhang H C , et al. Development of low background CsI(Tl) crystals and search for WIMP[J]. IEEE Transactions on Nuclear Science, 2008, 55(3):1420-1424.
[9] First limit on WIMP cross section with low background crystal detector[J]. Physics Letters B, 2006.
[10]  Grassmann H ,  Moser H G ,  Dietl H , et al. Improvements in photodiode readout for small CsI(Tl) crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1985, 234(1):122-124.
[11]  Deich R ,  Karklina M ,  Nagli L . Intraband luminescence of CsI crystal[J]. Solid State Communications, 1989, 71(10):859-862.
[12]  Aiello S ,  Anzalone A ,  Cardella G , et al. Light response and particle identification with large CsI(TI) crystals coupled to photodiodes[J]. Nuclear Instruments & Methods in Physics Research, 1998, 369(1):50-54.
[13]  Lee H S ,  Li Y J ,  Li J , et al. Limits on WIMP-nucleon cross section with CsI(Tl) crystal detectors[J]. Phys.rev.lett, 2007.
[14]  H. S , Bhang,  H. C , et al. Limits on WIMP-nucleon interactions with CsI(Tl) crystal detectors.
[15]  Babin V ,  Kalder K ,  Krasnikov A , et al. Luminescence and defects creation under photoexcitation of CsI:Tl crystals in Tl+-related absorption bands[J]. Journal of Luminescence, 2002, 96(1):75-85.
[16]  Seo H J ,  Zhang W S ,  Tsuboi T , et al. Luminescence properties of a CsI crystal doped with EU2+ ions[J]. Journal of Alloys & Compounds, 2002, 344(1-2):268-271.
[17]  Su L ,  Zhao H ,  Li H , et al. Near-infrared photoluminescence spectra in Bi-doped CsI crystal: evidence for Bi-valence conversions and Bi ion aggregation[J]. Optical Materials Express, 2012, 2(6):757-764.
[18]  Su L ,  Zhao H ,  Li H , et al. Near-infrared ultrabroadband luminescence spectra properties of subvalent bismuth in CsI halide crystals[J]. Optics Letters, 2011, 36(23):4551-3.
[19] Neutron beam test of CsI crystal for dark matter search.[J]. Nuclear Instruments & Methods in Physics Research Section A, 2002, 491(3):460-460.
[20]  Nagirnyi V ,  Stolovich A ,  Zazubovich S , et al. Peculiarities of the triplet relaxed excited-state structure and luminescence of a CsI:Tl crystal[J]. Journal of Physics Condensed Matter, 1995, 7(18):3637.
[21]  Ruo-Fu C ,  Hu-Shan X , F Rui-Rui, et al. Property measurement of the CsI(Tl) crystal prepared at IMP[J]. Chinese Physics C, 2008, 32(2):135.
[22]  Tasman H A ,  Boswijk K H . Re-investigation of the crystal structure of CsI 3[J]. Acta Crystallographica, 2010, 8(12):857-857.
[23]  Trefilova L N ,  Kudin A M ,  Kovaleva L V , et al. Role of sodium in radiation defect formation in CsI crystals[J]. Radiation Measurements, 2001, 33(5):687-692.
[24]  Schotanus P ,  Kamermans R . Scintillation characteristics of pure and Tl-doped CsI crystals[J]. IEEE.TRANS.NUCL.SCIENCE, 1990, 37(2):177-182.
[25]  Lee H S ,  Bhang H ,  Choi J H , et al. Search for Low-Mass Dark Matter with CsI(Tl) Crystal Detectors[J]. Physical Review D, 2014, 90(5):36-47.
[26]  Klamra W ,  Balcerzyk M ,  Kapusta M , et al. Studies of scintillation light nonproportionality of ZnSe(Te), CsI(Tl) and YAP(Ce) crystals using heavy ions[J]. Nuclear Inst & Methods in Physics Research A, 2002, 484(1-3):327-332.
[27]  Kim T Y ,  Cho I S , D H Choi, et al. Study of the internal background of CsI(T) crystal detectors for dark matter search[J]. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 500(1-3):p. 337-344.
[28]  Havinga E E ,  Boswijk K H ,  Wiebenga E H . The crystal structure of Cs2I8(CsI4)[J]. Acta Crystallographica, 1954, 7(6-7):487–490.
[29]  Ha S J ,  Kang H ,  Park H , et al. The Growth and Scintillation Characteristics of CsI:CO Single Crystals[J]. IEEE Transactions on Nuclear Science, 2009, 56(3):998-1001.
News
Request for a quote

Related Products​

Ce YAP
Eu CaF2
Ce GAGG

Primary Sidebar

Footer

Hot Product

Ce:YAG
Ce:YAP
Ce:LYSO
Ce:GAGG
Ce:LuAG
BGO

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Youtube
Pinterest
Tumblr
Mix
Linkedin

Contact Us Today

Mail:sales@crylink.com
Phone:+86-025-68790685
Address: No.200, zhaoxian Road, Jiading Zone, Shanghai, China

Get Connected with us
  • Home
  • Products
  • Reference
  • Sales
© 1989-2020 Crylink INC All rights reserved.